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Dispersion equations and a comparison of different 
quasi-periodic solutions of the sinelGordon equation 

J Zagrodzihski 
Instytut Fizyki PAN, 02-668 Warszawa, Poland 

Received 16 November 1981, in final form 18 March 1982 

Abstract. A system of dispersion equations for quasi-periodic solutions of the multi- 
dimensional sine-Gordon equation is discussed. This system of algebraical equations 
determines the parameters appearing in the solution which involves abstract theta-func- 
tions. In the case of the two-phase quasi-periodic solutions, it is shown that the form 
involving theta-functions represents a broader class than the class of solutions given by 
the expression 4 tan-' fg. The condition for the equivalence of both classes is also reported. 

1. Introduction 

This paper concludes an idea developed in previous papers (Zagrodzinski 1981, 1982, 
to be referred to hereafter as I and 11). We discuss the system of algebraical equations 
which is equivalent to the multidimensional sine-Gordon (SG) equation, if one looks 
for quasi-periodic solutions in the form 

9 = 2i In[e(z + $ d p ) / e ( ~ p ) ] +  (1 r 1 ) ~ / 2 ,  (1) 
where f3(zIB) is the multidimensional theta-function. The vector z is a g-dimensional 
vector 

N 

p = l  
~i = 1 ai+, + zio, i = l , 2  ,..., g, 

and we identify the last component of the N-dimensional vector x as time, i.e. x N  = it. 
d represents the unit vector 

(3) d = ( l ,  1,.  . . , l ) ,  

and B is a Riemann matrix (see appendix 1); zo is an arbitrary constant vector. 
Since quasi-periodic solutions have an analogy with soliton ones and the SG 

equation is important in many branches of physics, the aim of this paper is to determine 
the solution (1) completely, i.e. to determine also the constants aip appearing in the 
expression (1) via (2). 

It has already been shown in I and I1 that upon substitution of (1) into the 
multidimensional SG equation one obtains a system of algebraic equations which 
involve the constants ai, indirectly. 

It turns out that the system obtained is linear with respect to the quantities 
8 

i = l  
A,  = 1 aipaiq, (4) 

0305-4470/82/103109 + 10$02.00 @ 1982 The Institute of Physics 3109 



3110 J Zagrodziriski 

which one can interpret as the scalar products of the vectors U,  and U,. Since for 
N = 2, z,  = uilx - ar2t + zIo,  1 G i s g, and uil has the character of a propagation vector, 
whereas ur2 has that of an angular frequency, for the g-periodic wave process, the 
discussed system of algebraical equations plays the role of a system of dispersion 
equations for the SG equation. 

Solution (1) for the (l+l)-dimensional SG equation was derived by Kozel and 
Kotlyarov (1976) and then quoted by many authors (Matveev 1976, Nakamura 1979, 
1980, Zakharov et al 1980), particularly as an example of an application of abelian 
functions to the theory of nonlinear partial differential equations. The generalisation 
for the case of the multidimensional SG equation, based on a completely different 
approach, was considered in I and 11. Quite recently the properties of (1+ 
1)-dimensional solutions were related to the structure of the spectrum of an associated 
scattering problem (Forest and McLaughlin 1980). 

To our knowledge the system of dispersion equations for the SG equation has been 
reported only in I and 11. 

In 8 2 we derive an equivalent form of dispersion equations which we believe to 
be more convenient for further analysis and more effective for numerical evaluations. 
In 8 3, we compare the different forms of quasi-periodic solutions of the SG equation. 

As was pointed out in I, if there exists a correlation between the elements of 
the matrix B, or if the off-diagonal elements have a particular form, the multi- 
dimensional &function may be ‘split’ into a finite sum of the products of the fewer- 
dimensional &functions. This fact is fundamental for a comparison in the simplest 
1 + 1 case of the solution given by (1) and the commonly known, ‘old’ solution given 
by V = 4 tan-’ f ( x ) g ( t ) .  

It turns out that the two-phase quasi-periodic solutions of type (1) form a broader 
class, since only in particular cases can the two-periodical 8- function be represented 
by one-dimensional Riemann 9-functions. On the other hand the ‘old’ solutions, as 
expressed by elliptic functions, have always a representation in terms of the one- 
dimensional 9- functions. Both forms of solutions coincide if the diagonal elements 
of the B matrix are equal and an elucidation of these questions concludes § 3.  

Furthermore in the appendices we summarise the essential relations for the 
@-functions which can be helpful for the reader. 

2. An algebraic representation of the SG equation, 

For the sake of completeness, a concise review of the main topics covered in papers 
I and I1 is in order. There we considered the multidimensional SG equation 

N 
1 a f , ~  = sin V, 

i = l  
( 5 )  

where xN =it. xl, . . . , X N - 1  are interpreted as the space coordinates and t as time. 
Thus equation ( 5 )  concerns ( ( N  - 1) + 1)-dimensional space-time. 

Upon introduction of the new variables ti related formally to x p  by (2), the SG 

equation becomes 
g 1 A,,aZ,azqT =sin T, 

P.4 = 1 

and the coefficients A,, are given just by (4). Observe that g, the fixed number of 
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the independent zi variables, may be different from N and is a parameter in further 
considerations. Thus, to be precise, we look for the g-phase quasi-periodic solution 
of the SG equation in the (N - 1 + 1)-dimensional space-time. 

Instead of the term ‘g-phase quasi-periodic solution’, the terms ‘solutions on a 
circle’, ‘kink-trains’, ‘wavetrains’, or simply ‘periodic solutions’ are also in commonly 
accepted usage. 

The next step was the most important. By the substitution of 9 given by (1) in 
the relation (6) one can determine A, and further, by (4), also aiP Indeed, making 
use of (A1.9), equation (6) reduces to 

where the outer sum over E E Dg here and later denotes the sum over all g-dimensional 
vectors E with components ci taking only the two values 0 or 1. &,d is the Kronecker 
symbol and the functions F ( z ;  EIB) are given by the squares of multidimensional 
8- functions 

F ( Z ;  E I B ) = ~ ~ ( z  +td+tElB)e2(21B)-e2(2 + td lB)e2 ( t+ tE(B) .  (8) 

The coefficients come from the differentiation of a &function (see A1.9) and 
(Al . l l ) ) ,  as 

fl:4 = 2-k+l) 1 ( - i ) E . ” s - 1 ( ~ s 1 2 ~ ) a w ~ a w ~ [ e ( 2 w  + B S J ~ B )  exp(i2rrw * S ) I ~ ~ = ~ ,  

where the symbol E * S denotes the scalar product, e.g. 

(9) 
S E D =  

E 6 = f E A ,  (10) 
i = l  

and aWi the differentiation with respect to the ith component of the vector w. 
Observe now that (7) is satisfied if for each non-vanishing E E Dg 

This equation would be a unique condition for the fulfilment of (7) if F ( z ;  EIB) were 
linearly independent. Since for E = 0, by (8) it follows that F ( z ;  OIB) = 0, formula 
(1 1) represents a system of 2’ - 1 algebraic equations which apparently can be treated 
as a system of dispersion equations for the SG equation. 

In I1 it was shown that for g = 1 or 2, equations (11) have always a solution for 
each Riemann B-matrix. For g B 3, the system is overdetermined, but for g = 3 
however, there is a conjecture that the solution exists also for each Riemann B-matrix. 

This problem is closely connected with the Novikov hypothesis relative to the 
Korteweg-de Vries and Kadomtsev-Pietviashvili equations. This hypothesis states 
that the condition of the solvability of the relevant analogue of (1 1) (for the Kdv or 
KP equations) is equivalent to the condition which narrows down the class of &functions 
to the so-called @-functions on the Riemann surfaces. Although this question is 
recently examined in the theory of abelian functions (e.g. Dubrovin 1981), it will not 
be discussed further here. Also, for the detailed proof of dispersion equations, the 
reader is referred to 11. 

If equation (1 1) is fulfilled, then formula (1) yields a g-phase quasi-periodic solution 
of the SG equation in N-dimensional space-time. There is no evidence, however, that 
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it is the unique solution. Equation (11) constitutes also a practical algorithm for the 
determination of the B-matrix and the scalar products A,, although the form of 
coefficients (9) is not convenient for further analysis. Therefore, below, we shall derive 
a more suitable form of equations (1  1) .  

Let us consider the equations 

for each E ED‘. Equations (12) and (11) are equivalent, but here we include the case 
E = 0 (introducing also the additional ‘dummy’ unknown c*/4). 

Multiplying (12) by (-l)”,, where p ED’ and summing over the elements of the 
die E E D’, we obtain 

f,,,, = awPawq[8(2w +Bpl2B)  exp(2?riw p)lw=o. (15) 
Observe that the coefficientsf, andf,,, are determined by the values of the @-function 
and its derivatives at fixed points. By the relations (A1.5) and next (A1.2) equation 
(13) becomes now 

Once more multiplying by (-l)e’w and summing over p ED’,  the dispersion 
equation reads finally 

and ought to be satisfied for each E E Dg. 
8,(~/21B/2) denotes the second (mixed) derivative of the &function with respect 

to arguments wp and wq at points w = ~ / 2 .  
Relation (17) constitutes a system of 2’ algebraic equations linear with respect to 

the [ g ( g  + 1)/2] + 1 quantities A, and c*,  which one can treat as unknown. Observe, 
however, that the matrix B must also be determined. For g = 1 or 2, as in the case 
of equations (ll),  the system (17) always has a solution for any Riemann matrix B. 
For g > 2, the number of equations 2’ exceeds the number [g(g + 1)/2] + 1 of quantities 
A, and c*, and treating the matrix B as a parameter, the system is overdetermined. 
But the numerical experiment performed by Hirota and Ito (1981) for the K d v  
equation ( g  = 3), where a similar situation occurs, exhibits that some equations are 
superfluous, and then one hopes that our equation (17) has also a non-trivial solution. 
This would indicate that the Novikov hypothesis previously mentioned may also be 
valid for the SG equation. 

Comparing (11) and (17), it is seen that the latter relation is much better for 
numerical evaluations. 
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If equations (17) have a solution, choosing apj which satisfy (4), we obtain the 
completely determined solution of the SG equation in the form (1). In general it is 
complex and the problem of an extraction of the real solutions seems to be hard. 

The solution (1) depends on B doubly :directly, since the matrix B appears in the 
definition of the &function as a parameter (see (Al,l)) ,  and indirectly, since apj in 
(2) depends on B through A,, as the solutions of the dispersion equations (11) or 
(17). In consequence, it is hard to predict the condition for the reality of solutions. 
One can ask however, when Y defined by (1) is real. 

It is seen from the definition (Al.  1) of the &function that putting 

(9 z = z '  } and B : j = { :  for i = j ,  
for i # j ,  (ii) z =iz" 

(iii) z = d/4 + iz" and BI. = O  (20) 

where all the quantities z', z",  Bij, Bg are real. 
These conditions immediately follow from the requirement 8(d/2 + z IB) = 8*(z IB), 

where an asterisk denotes the complex conjugate quantity. 
In cases (i) and (ii) we have an oscillatory type solution (Y is periodical in z i), while 

case (iii) describes a rotational type solution (Y is monotonic in z Y ). This distinction is 
originated by one-dimensional solutions describing the oscillations or rotational motion 
of a pendulum. This one-dimensional case reveals however that (19) and (20) are not the 
unique requirements to obtain real solutions. Taking into account the unimodular 
transformation for the Riemann &function (Bateman and Erdelyi 1955), real solutions 
can exist also if B' and B", which are then numbers, obey the equation 

(B' - bo)2 + ( B " ) ~  = r2,  (21) 

with suitably chosen bo and r. Equation (21) represents a family of circles and the 
conditions (19), (20) in the one-dimensional case are seen to represent degenerate 
circles: straight lines. 

Similar, although more complex relations occur also in the multidimensional case, 
that suggest that conditions (19) and (20) are not unique. 

3. Relations between the two classes of solutions 

Let us consider now the two-phase quasi-periodic solution only. At first the solutions 
of this type were found much earlier by the substitution 

9 = 4 tan-' f ( u ) g ( u ) ,  (22) 
where U and U were identified as x and t or as their Lorentz transformations (Seeger 
et a1 1953, Perring and Skyrme 1962, Osborne and Stuart 1978, 1980, Zagrodzihski 
1976). 

As is known, (22) leads to first-order differential equations for f and g ,  and 
periodical solutions of these equations are expressed by means of elliptic functions. 
Properties of the solution (22) in application to the nonlinear phenomena in optics 
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have been discussed by many authors (e.g. Lamb 1971, 1980) and in application to 
the theory of the Josephson junction were analysed also by Parmentier (1978), 
Costabile et a1 (1978) etc. 

Quasi-periodic solutions in the form (22) are divided into three fundamental groups 
and are known as plasma, breather and fluxon oscillations. 

A natural question now occurs: what is the relation between the solutions (1) and 
(22), if any? 

In I and I1 we made a guess that the two forms are equivalent only if the 
two-dimensional &function has a representation in terms of one-dimensional 4- 
functions, since the periodic solution (22) can always be expressed by the latter. 

There are a few situations when the two-dimensional &function has such a 
representation, i.e. can be expressed by a finite sum of the elements containing 
one-dimensional Riemann &functions (43, 84). Some of them are listed in appendix 
2, but the most important for our purposes is the condition 

B11 = B22. (23) 
As is shown in appendix 2, if (23) holds, then the two-dimensional &function has 

the representation 

where 
z* = ( 2 1  z2)/2, 

b*= (Bii*B12)/2= (B22*B12)/2, 
if Im 6' > 0. 8 3 ( z  16) denotes the one-dimensional Riemann theta-function. 

The equivalence of (1) and (22) requires that 

f(u)g(u) = i ( e ( r  +Bdp)-e(zlB))/(e(z +W)+ e(@)),  (27) 

which means that the right-hand side of (27) must be 'factorisable' with arguments 
U, v (of the factors) being linearly independent combinations of z1  and 2 2 .  

Among the conditions quoted in appendix 2, only (23) fulfils these requirements 
and by (24), the condition (27) reduces to 

ih'h- = gf, 
where 

h' = h*(z*/b*) = (64 (~ ' lb* )  - 43(~'16'))/(S4(z*16') + 83(~*6*)) .  (29) 
We have used here the commonly accepted notation for the Jacobi theta- 

functions, writing O3 and Q4 instead of O(rlb) and e ( z  +$16), respectively (Jahnke et 
a1 1960). 

Each of the functions h' can be written as 
h = [(")'"-dn(u, k)][(k')''2+dn(u, k)]-', 

k' = 8: (OJb)/4:(016), 

k = [ l - ( k ) l  , 

where 

I 2  1/2  

U = 7r6:(01b)z, 

i.e. is expressible by the elliptic functions. 
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Making use of the elementary transformation of elliptic functions, (30) can be 
reduced to the usual form of the periodical solution of the SG equation. For example, 

(34) h = -Ah Cn(Uh, kh), 

Thus we have shown that if the diagonal elements of the matrix B are equal, the 
two-phase quasi-periodic solutions of the SG equation can be transformed into the 
form (22). If the diagonal elements are different, however, relation (1) represents a 
new class of solutions (than expressible by (22)) and we intend to present its properties 
separately. Here we mention only that, for example, taking the solutions which in 
the moving frame would be essentially quasi-periodical (with Bll = B22), by a suitable 
choice of the diagonal elements of the B matrix (B l l  # B2’), they can be transformed 
into strictly periodic solutions without change of their magnitudes (Jaworski and 
Zagrodzifiski 1982). 

4. Conclusions 

In 9 2  we have presented a new and simpler version of the system of algebraical 
dispersion equations, whose solution determines the solution of the multidimensional 
SG equation. 

Another interesting point here is that in the simplest, two-periodical case, the 
solutions in the form (l), expressed in terms of the abstract theta-functions, constitute 
a broader class than the solutions used so far in the descriptions of physical phenomena 
(equation (22)). The conditions for the parameter matrix B when both categories of 
solutions are equivalent are also reported. 

The results derived here can also be achieved by applying the more general class 
of theta-functions, the so-called theta-functions with characteristics, similarly as was 
done for the equations of K d v  type by Dubrovin (1981). 
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Appendix 1 

In order to make our paper more accessible to the reader we report the fundamental 
algebraical properties (only) of &functions. More details, particularly relative to the 
theory of multidimensional abelian functions, can be found in Matveev (1976), 
Dubrovin (1981), Zakharov et a1 (19801, or in the other papers cited there. 
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For the algebraical properties of @-functions, the reader is referred to Krazer 
(1903), although some of the relations are for the first time quoted in I and 11. 

The abstract @-function is defined for complex g-dimensional vectors z by 

~ ( z I B )  = 1 exp(i2m - n + i m  Bn), ( A l . l )  

where the sum over n €2' is taken over all g-dimensional vectors n with the integer 
components ni running -CC < ni <CO. The matrix B, which plays the role of parameter, 
is the Riemann matrix, i.e. it is complex and symmetrical with positively defined 
imaginary part: Im n * Bn > 0. This requirement ensures the absolute convergence of 
the series ( A l . l )  in compact domains and analyticity of @(z)B).  

As previously, by D g  we denote the set of all g-dimensional vectors whose 
components take only two values: 0 or 1.  Then the following identities hold: 

e ( z + n  +BmIB)=exp[- i~(2z  * m + m  * B m ) ] @ ( z l ~ )  (A1.2) 

@'(zJB) = 1 expCir(2e z + e  * Be)]@(Be)2B)8(2z + B E I ~ B ) ,  (A1.3) 

n e Z K  

for m, n E Zg, 

E E D ~  

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 

(A1.8) 

(A1.9) 

where the constants flz and l2f are given by 

( A l .  10) 

fl:q = 2-(g+l) C ( - i ) " ' " e -1 (~~12~)a ,pa , , [ e (2~  + B P ~ ~ B )  exp(i2.rrw L ~ ) I ) ~ = ~ ,  
"€DK 

( A l .  11) 
respectively. (A1.lO) and ( A l . l l )  mean that the coefficients SZ;, fl? are determined 
by the derivatives of the @-function, but at fixed points. 

Appendix 2 

If the matrix B, being the Riemann matrix, takes the particular forms, the two- 
dimensional &function can always be expressed by a finite sum involving one- 
dimensional @-functions, i.e. by commonly used in the theory of elliptic functions, the 
Reimann theta-functions Q g  called then the Jacobi theta-functions. 
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From the definition (Al . l )  and by the relation 

793(qz/q26)=q-'y1 5 -0  793 (z++), 4 

where q is integer, it is easy to check that if 

(a) B12 = €44, 
where p and q are integers, then, for z = (zl 

O(z(B) = q-lyl Y1 exp( -i27rsl-) 7Y3 (ZI +; S 

s = o  r=o 4 

(A2.1) 

(A2.2) 

(A2.3) 

If 

(b) BIZ  = h r / q  (or BIZ  = Bllr/q), (A2.4) 

and r, q are integers, then 

f?(z(B)= 1 e x p [ i 7 r ( 2 ~ z ~ + s ~ B ~ ~ ) ] 7 9 ~  (qz1-rz2+-ala V ( q  793 z2+-rBzZ]B22), ( A 2 3  

where a = q2Bll - r2BZ2 and Im a > 0 (or relation (A2.5) with exchanged indices 
1$2). Moreover, the requirements (a) and (b) can be written jointly as 

(cl B I Z  = P + r B d q  (or B I Z  = p + r B d q ) ,  (A2.6) 

where p, q, r are integers. 
Similar relations can be derived upon application of (a) or (b) to the inverse matrix 

(-B-') due to the equation (A1.7). Thus the other case of interest, when a two- 
dimensional &function can be 'split' into one-dimensional &functions, is 

(4 Btz = (BiiBx-B:z)p/q +Biir/q, (A2.7) 

The most interesting however, is the case 

(e) Bii = Bzz. (A2.8) 

Assuming that Im(Bll i B12) > 0,  by the definition (Al . l )  we have 

q-1  S 

s = o  4 

with p ,  q, r integers (or a similar relation with interchanged indices). 

d(zlB) = 1 exp{i.rr[2(mz1+nz2)+(m2+n2)B11+2mnBl2J} 
m . n c Z  

(A2.9) 

= 1 ~ ~ P ~ ~ . ~ ~ ~ ~ ~ ~ Z + P ~ B ~ ~ ~ ~ ~ ~ ~ ~ ~ - Z ~ - P ~ B ~ ~ - B ~ ~ ~ ~ ~ ~ B ~ ~ - B ~ ~ ~ ~ ,  
P P Z  

where in the first part of relation (A2.9), p = m +n was substituted. Making use of 
(A1.5) and next (A1.2), (A2.9) yields 

2-' 1 exp[i . r r (pz~+p~Bll) l  ~ ~ ( [ z I - z ~ - ~ ( B I ~ - B ~ z ) + S I / ~ ~ ( B ~ ~ - B ~ Z ) / ~ )  
1 

P E Z  s=o  
1 

= 2-l 1 63(z++S/216+)63(2-+6/21b-), 
6 = 0  

where z* and 6" are given by (25) and (26), respectively. 
This concludes the proof of the identity (24). 

(A2.10) 
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